ASSESSMENT OF PIEZOELECTRIC PAVEMENT ENERGY HARVESTING FOR DISTRIBUTED POWER SUPPLY IN URBAN TRANSPORT SYSTEMS

NGUYEN PHAN ANH1, , BUI NGOC DUNG2
1 Faculty of Civil Engineering, Vietnam Maritime University, Haiphong City, Vietnam
2 Faculty of Technology and Engineering, Hai Phong University

Nội dung chính của bài viết

Tóm tắt

This study investigates the feasibility of applying piezoelectric pavement technology in Vietnamese urban roads to harvest energy from traffic loads, using survey data from Route 353, Hai Phong. Based on PCU conversion factors from TCVN 13592:2022, a daily traffic volume of 30,873 vehicles corresponds to 62,710 axle passes. At a baseline configuration of 40 modules per 100 m, the harvested energy is only 20-80 Wh/day/km, far below the demand for street lighting (~12,000 Wh/day/km). However, increasing density to 150-200 modules per 100 m with a hit probability phit ≥20% yields 0.3-0.4 kWh/day/km (110-146 kWh/year), sufficient to power distributed infrastructure such as electronic signage, surveillance cameras, or ITS sensors. Estimated investment costs of 0.85–1.50 billion VND per 100 m highlight economic challenges, yet the technology provides added value by enabling distributed power supply, reducing cabling costs, and improving energy autonomy. The findings confirm the technical feasibility of piezoelectric pavements for smart transport infrastructure in Vietnam, while recommending pilot projects, development of national standards, and hybrid integration with photovoltaics to enhance system efficiency.

Chi tiết bài viết

Thông tin về tác giả

ThS BUI NGOC DUNG, Faculty of Technology and Engineering, Hai Phong University

Giảng viên Khoa Công nghệ và Kỹ thuật

Tài liệu tham khảo

[1] Innowattech. Piezoelectric generators in road infrastructure. 2020.
[2] JR East. Eco-friendly projects in railway stations. 2019.
[3] Pavegen. Smart flooring systems. 2021.
[4] Ye F., Xiao B., Ding X., Ma T., Xu G., Wang D. (2025). Material parameter inversion based on the piezoelectric wave propagation method and its application in pavement deflection prediction. Construction and Building Materials, 490, 142443.
[5] Cao Y., Sha A., Liu Z., Li J., Jiang W. (2021). Energy output of piezoelectric transducers and pavements under simulated traffic load. Journal of Cleaner Production, 279, 123508.
[6] Zheng K., Xie N., Jin J., Liu P. (2025). Environmentally friendly lead-free piezoelectric ceramics as pavement sensing element: A multi-scale finite element perspective. Case Studies in Construction Materials, 23, e05174.
[7] Lưu Quỳnh Hường. (2021). Ứng dụng vật liệu áp điện trong đánh giá trạng thái kỹ thuật công trình. Luận án tiến sĩ, Học viện Khoa học và Công nghệ.
[8] Đỗ Viết Ơn. (2023). Chế tạo, nghiên cứu các tính chất vật lý của hệ gốm áp điện trên cơ sở BaTiO3 và ứng dụng. Luận án tiến sĩ, Đại học Huế
[9] Jaffe B., Cook W.R., Jaffe H. (2012). Piezoelectric Ceramics. Elsevier.
[10] Priya S., Inman D. (2009). Energy Harvesting Technologies. Springer.
[11] Wang J., Xiao F., Zhao H. (2021). Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering. Renewable and Sustainable Energy Reviews.
[12] Cao, Y., Zhang, F., Sha, A., Liu, Z., Li, J., & Hao, Y. (2022). Energy harvesting performance of a full-pressure piezoelectric transducer applied in pavement structures. Energy and Buildings, 266, 112143.
[13] Du C., Liu P., Jin C., et al. (2022). Evaluation of the piezoelectric and mechanical behaviors of asphalt pavements embedded with a PEH based on multiscale finite element simulations. Construction and Building Materials, 333, 127438.
[14] UN-Habitat. World Cities Report 2022. Available: https://unhabitat.org
[15] TCVN 13592:2022. Urban roads – Design requirements.
[16] Hai Phong Department of Construction, the third quarter of 2025. The vehicle counting results report.
[17] California Energy Commission (CEC). (2023). Energy harvesting from pavements – Roadmap and cost targets. Technical Report